The generator matrix

 1  0  1  1  1  1  1  1  0  1  1 X+6 2X+6  1  1  1  1  1 2X  1  1  1  X  1  1  6  0  1  1  1  1  1  1  1  1  1  1 2X  1  1  1  1  1  1  1  X  6  0  6  1  1  1 2X+6  X X+3  1  1  1  1  1  1 X+6  3  1  1  1  6 X+6 2X  X  1  1  1  1 X+3  1  1  1  1  1  1
 0  1  1  8  6  5  0 2X+1  1 X+1 X+5  1  1 2X+2 2X+7  6  8  7  1 X+4  6 X+8  1 X+6 X+8  1  1 2X+5 2X+7 2X+1  8 2X X+1 2X+3 X+2  7 2X+3  1 X+3 2X+2 X+4 X+6 X+5 2X+1 2X  1  1  1  1 X+1 2X X+4  1  1  1  0  5  5 2X+3 2X+5 X+6  1  1 X+3 2X+2  0  1  1  1  1 2X+3 2X+7 2X+8  5  1 X+4  X X+6  2 X+2 2X+2
 0  0 2X  3 X+3 X+6 2X+3  X  3  6 2X+6 2X+6 X+3 X+6 X+3  6  0  3 2X 2X X+6 2X+3 X+3 2X+3  X  X 2X 2X  3 2X+3 2X 2X+6 X+6  X X+3 X+6  3  3  X  6  0  3  6 2X+6 2X  0 X+6 2X+6  6 X+3 X+3 2X+3  6 2X+3  X 2X+6 2X+6  X  6 X+3  0  6  X 2X+6  0  3 2X+3 X+3 2X+6  3 X+6 2X  3 2X 2X+3 X+6  6 X+3  6  6 2X+6

generates a code of length 81 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 157.

Homogenous weight enumerator: w(x)=1x^0+534x^157+684x^158+592x^159+1014x^160+576x^161+700x^162+366x^163+468x^164+224x^165+564x^166+252x^167+168x^168+246x^169+114x^170+12x^172+10x^174+18x^175+12x^179+4x^180+2x^195

The gray image is a code over GF(3) with n=729, k=8 and d=471.
This code was found by Heurico 1.16 in 0.393 seconds.